一、问题复现 不知你是否遇到过 join 结果明显不匹配的情况,例如on t1.join_key = t2.join_key
中两个join_key
明显不相等,但 join 的结果却将其匹配在一起。今日博主在通过用户 id 关联获取用户信息时发现一个用户 id 可以在用户维表中匹配出若干条(用户维表不存在数据重复),如下:
create table tmp_hz_perm.tmp_20240520_1( id string ) stored as parquet; create table tmp_hz_perm.tmp_20240520_2( id bigint , name string ) stored as parquet;
插入若干条数据
insert into tmp_hz_perm.tmp_20240520_1values ('4268348961309240666' );insert into tmp_hz_perm.tmp_20240520_2values (4268348961309240666 , 'user1' ), (4268348961309241004 , 'user2' ), (3268348961319241004 , 'user3' );
模拟事故 sql
select * from tmp_hz_perm.tmp_20240520_1 t1left join tmp_hz_perm.tmp_20240520_2 t2 on t1.id = t2.id;
我们期望的结果是返回user1
,但实际情况却是匹配出多条数据
有经验的小伙伴可能一眼就看出来 join 的问题,那就是两个join_key
数据类型不一致,恭喜你成功找到了这个问题!!!那么对应的解决方案就是保持数据类型一致即可
select * from tmp_hz_perm.tmp_20240520_1 t1left join tmp_hz_perm.tmp_20240520_2 t2 on cast (t1.id as bigint ) = t2.id;
结束了吗???显然没有!我们还没有探寻这个问题的本质
二、本质分析 上面的现象可以总结出两点疑问:
数据不一致真的查询不出来数据吗 为什么会关联出一条完全不相干的数据 对于问题一,数据不一致是可以查询出来的,例如
select * from tmp_hz_perm.tmp_20240520_2 where id = '4268348961309240666' ;+ | tmp_20240520_2.id | tmp_20240520_2.name | + | 4268348961309240666 | user1 | + 1 row selected (0.145 seconds)
回答问题二需要从执行计划出发
STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3 STAGE PLANS: Stage: Stage-4 Map Reduce Local Work Alias - > Map Local Tables: t2 Fetch Operator limit: -1 Alias - > Map Local Operator Tree: t2 TableScan alias: t2 Statistics: Num rows : 3 Data size: 6 Basic stats: COMPLETE Column stats: NONE HashTable Sink Operator keys: 0 UDFToDouble(id) (type: double ) 1 UDFToDouble(id) (type: double ) Stage: Stage-3 Map Reduce Map Operator Tree: TableScan alias: t1 Statistics: Num rows : 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Left Outer Join 0 to 1 keys: 0 UDFToDouble(id) (type: double ) 1 UDFToDouble(id) (type: double ) outputColumnNames: _col0, _col4, _col5 Statistics: Num rows : 3 Data size: 6 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col0 (type: string), _col4 (type: bigint ), _col5 (type: string) outputColumnNames: _col0, _col1, _col2 Statistics: Num rows : 3 Data size: 6 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows : 3 Data size: 6 Basic stats: COMPLETE Column stats: NONE table : input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Execution mode: vectorized Local Work: Map Reduce Local Work Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink
注意 hive 的执行计划中比我们想象中要多做一步UDFToDouble
,其原因就是当两个关联键数据不一致时为了还可以进行关联,hive 将其 key 统一转换为Double
,同时也可以看一下UDFToDouble
的处理逻辑
public DoubleWritable evaluate (LongWritable i) { if (i == null ) { return null ; } else { doubleWritable.set(i.get()); return doubleWritable; } } public DoubleWritable evaluate (Text i) { if (i == null ) { return null ; } else { if (!LazyUtils.isNumberMaybe(i.getBytes(), 0 , i.getLength())) { return null ; } try { doubleWritable.set(Double.parseDouble(i.toString())); return doubleWritable; } catch (NumberFormatException e) { return null ; } } } public void set (double value) { this .value = value; }
可以看出set
入参均是 double,那么4268348961309240666
在进行数据转换时一定会发生精度丢失(远超 double 的范围),下面的一个小 demo 可以很好的解释为什么会匹配出不相等的数据
package fun.uhope;import org.apache.hadoop.hive.ql.udf.UDFToDouble;import org.apache.hadoop.hive.serde2.io.DoubleWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;public class Test { public static void main (String[] args) { String k1 = "4268348961309240666" ; long k2 = 4268348961309240666L ; long k3 = 4268348961309241004L ; long k4 = 3268348961309241004L ; UDFToDouble uDFToDouble1 = new UDFToDouble (); UDFToDouble uDFToDouble2 = new UDFToDouble (); UDFToDouble uDFToDouble3 = new UDFToDouble (); UDFToDouble uDFToDouble4 = new UDFToDouble (); DoubleWritable v1 = uDFToDouble1.evaluate(new Text (k1)); DoubleWritable v2 = uDFToDouble2.evaluate(new LongWritable (k2)); DoubleWritable v3 = uDFToDouble3.evaluate(new LongWritable (k3)); DoubleWritable v4 = uDFToDouble4.evaluate(new LongWritable (k4)); System.out.println(v1); System.out.println(v2); System.out.println(v3); System.out.println(v4); System.out.println(v1.compareTo(v2)); System.out.println(v1.compareTo(v3)); System.out.println(v1.compareTo(v4)); System.out.println((double ) k2 == (double ) k3); System.out.println((double ) k2 == (double ) k4); System.out.println(k2 == k3); } }
结果如下:
对于sql-2
、sql-3
各位可以查看一下各自的执行计划就能明白为什么可以得到期望的结果
思考: 针对 hive join 过程中当数据类型不一致时采用UDFToDouble
是否合理